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ABSTRACT 
 
 

aguio City’s dengue incidence data for years 2011 to 
2022 exhibit three-year cycles of increasing 
amplitudes. However, current epidemiological 
models do not capture this behavior. This study 
modifies the dengue disease model presented in the 

paper by de los Reyes and Escaner (2018), introducing two key 
modifications: (1) incorporating logistic growth in the human 
population and (2) including seasonality in mosquito population 
growth. With the observed multi-year cycles for disease 
progression in the city, the model is calibrated to Baguio data to 
estimate epidemiologically important parameters such as 
transition rate from susceptible to hospitalized humans, vector 
biting rate, transmission probability from human to vector and 
vector to human. A constrained-ODE optimization routine is 
used to determine model parameter values that produce model 
curves capturing the dynamics of dengue incidence in Baguio. 
Using these estimated parameters, simulations are presented 
with variations observed over cycles each spanning 3 years. 
Reproduction numbers are calculated, with values ranging from 
1.39 (2011–2013) to 1.67 (2014–2016). Sensitivity analysis and 
parameter bootstrapping are also performed to determine 
confidence intervals. Results of the study yield city-specific 
parameter estimates which can guide policy makers in 
forecasting, in evaluating the impact of interventions, as well as 

in making decisions towards optimizing the timing and intensity 
of vector-control measures. 
 
   
INTRODUCTION 
 
Dengue is a human viral infection primarily transmitted to 
humans by the bite of female mosquitoes in the Aedes genus, 
mainly by Aedes aegypti and in some cases, by Aedes albopictus 
(Bhatt et al. 2013). Symptoms, which usually manifest 4 – 10 
days after infection, include high fever, vomiting, and rashes, 
while a majority of cases are asymptomatic. Secondary 
infections have a greater risk of severe dengue and may lead to 
death (World Health Organization 2024). 
 
Dengue incidence has surged significantly in recent decades, 
with reported cases rising from 500 thousand in 2000 (World 
Health Organization 2023) to more than 14 million in 2024 
(European Centre for Disease Prevention and Control 2024). 
However, the reported cases substantially undertestimate the 
true scale of the dengue epidemic, as many countries lack robust 
detection and reporting mechanisms. One study suggests that 
approximately 390 million people are infected each year, with 
the majority of cases occurring in the Asia-Pacific region (Bhatt 
et al. 2013). In the Philippines, the Department of Health 
reported 43,732 dengue cases from January to February, 2025, 
which is 56% higher than the cases recorded for the same period 
in 2024 (Department of Health 2025). The City Health Services 
Office of Baguio City, Philippines reported 260 dengue cases 
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from January to April, 2025, with 93 admitted to the hospital 
(Refuerzo 2024b). 
 
The Communicable Disease Control Service of the Department 
of Health in the Philippines (DOH), formulated the National 
Dengue Prevention and Control Programme, initially piloted in 
Region 7 and the National Capital Region (NCR) of the 
Philippines (Dominguez 1997). The program aims to reduce 
dengue morbidity and mortality rates by integrated vector 
control, effective case diagnosis and management, fever 
surveillance, epidemic contingency planning and research. The 
DOH also encouraged the community to apply the enhanced 4S 
strategy as well as implementation of other program policies and 
guidelines (see Department of Health n.d.). In Baguio City, the 
city government implemented Ordinance No. 66 series of 2016 
called the “Anti-Dengue Ordinance of the City of Baguio” 
(Refuerzo 2024a). The ordinance aims to enhance case 
surveillance, public awareness campaign and clean-up drives 
throughout the city. The city also conducts ‘“Denguerra’’ (War 
against Dengue) program’, a clean-up drive by barangay 
officials, police officers, and residents to search for and destroy 
mosquito breeding sites every Thursday. To intensify case 
surveillance, an online system for citizen self-reporting was also 
launched (Refuerzo 2024b). 
 
Mathematical models study the spread of communicable 
diseases to gain insights for control strategies (Brauer 2017). In 
the Philippines, these mathematical models incorporating 
dengue incidence are mostly composed of statistical and 
compartmental models. Statistical models use correlation and 
time-series analysis to understand climatic and environmental 
factors that affect dengue-related mortality and forecast 
epidemics (Acosta and Nacion 2024; Seposo et al. 2024; 
Marigmen and Addawe 2022b; Marigmen and Addawe 2022a). 
Deterministic models use compartments whose interactions are 
described using differential equations to capture the evolution of 
infections and describe the parameters that greatly affect the 
dynamics (Cawiding et al. 2025; de los Reyes and Escaner IV 
2018; Libatique et al. 2017). The study of de los Reyes and 
Escaner IV (2018), in particular, modified a susceptible-
infected-removed (SIR) vector-host transmission model by 
incorporating a compartment for individuals who seek 
healthcare at the onset of the disease. Using the reported 
Philippine dengue incidence data obtained from years 2014 to 
2015, they were able to fit their model and estimate parameter 
values. Their findings indicate that very few dengue-infected 
individuals seek treatment. 
 
Southeast Asian countries, where dengue virus is endemic, 
observe a surge of dengue cases during specific months of the 
year. This includes many parts of Indonesia (Fauzi et al. 2022; 
Dhewantara et al. 2019), Thailand (Phanitchat et al. 2019), 
Singapore (Rajarethinam et al. 2018), Vietnam (Col´on-
Gonz´alez et al. 2021) and Philippines (Seposo et al. 2024). For 
instance in Baguio City, Philippines, dengue cases are observed 
to increase from June to July and decrease from August to 
December (Marigmen 2024). Interestingly, data on dengue 
incidence in Baguio City from 2011 to 2024 call attention to 
apparent cyclic behavior over three-year periods, see Figure 3. 
This observed seasonality of dengue cases is often attributed to 
climatic factors like precipitation and temperature, population 
density, and human mobility (Cawiding et al. 2025; Marigmen 
and Addawe 2022a; Zhu et al. 2019; Costa et al. 2022). 
 
Several models have been introduced in the literature to capture 
the seasonality of dengue epidemics. For instance, Aguiar, 
Ballesteros, and Stollenwerk (2011) added a seasonal forcing 
(using a cosine function) into a two-strain host-host dengue 
model and showed good comparison to seasonal empirical 
dengue data. Lourenco and Reccker (2013) observed multi-

annual dengue epidemic outbreaks in their proposed spatially 
explicit, multi-strain agent-based model. Rashkov and Kooi 
(2021) used cosine waves to describe seasonally changing 
mosquito populations in a two-strain host-vector model. The 
bifurcation analysis of their model asserts the importance of 
incorporating seasonal mosquito population dynamics in 
studying yearly spikes of dengue incidences. They remarked that 
annual periodic dengue epidemics are due to the periodicity of 
mosquito populations. 
 
Focusing only on mosquito population dynamics, Mancuso and 
collaborators (2023) used a non-autonomous logistic model of 
mosquito population with periodic net growth rate and carrying 
capacity. The resulting parameters accurately capture the inter-
annual and intraseasonal variability of mosquito populations 
within a single geographic region. A variancebased sensitivity 
analysis highlights the influence each parameter has on the peak 
magnitude and timing of the mosquito season. 
 
In this study, we include the seasonal pattern of mosquito 
population growth observed by Lourenco (2013) and Mancuso 
(2023) and their respective collaborators, and modify the 
compartmental model introduced by de los Reyes and Escaner 
IV (2018). This is not only to fit the yearly dengue incidence rate 
in Baguio City but also to capture the 3-year cycle of increasing 
amplitudes of dengue infection in the city. Sensitive parameters 
of the model are determined using partial rank correlation 
coefficient (PRCC). Unknown parameter values are estimated 
by fitting the model to the data from the Baguio City Health 
Services Office (HSO). Confidence intervals of the estimated 
parameters are also obtained through bootstrapping. This model, 
as well as the parameter values, can be used to forecast dengue 
infections in the city and can serve as guide for policy-making. 
 
The paper is organized as follows. The construction and analysis 
of the model is discussed in Section 2. The computation of the 
reproduction number as well as the sensitivity analysis of 
parameters are also included in this section. We then provide 
parameter estimation, bootstrapping and simulations in Section 
3. Finally, discussions and recommendations are summarized in 
the last section. 
 
 
A MODEL OF DENGUE TRANSMISSION 
 
Model construction 
We consider the single-strain host-vector compartments 
introduced by de los Reyes and Escaner IV (2018). The 
susceptible (𝑆!), the unhospitalized or unmonitored infectious 
(𝐼!), the healthcare-seeking infected (𝐽!), and the removed or 
recovered (𝑅!)  individuals constitute the human population. 
The sum of these populations is denoted by 𝑁!(𝑡). Similarly, the 
susceptible (𝑆"), and the infectious (𝐼") vectors constitute the 
vector population. The sum of these two classes is the total 
vector population, denoted by 𝑁"(𝑡). We include in our model a 
carrying capacity 𝐾!  for humans and 𝐾"  for vectors. 
 
Table 1: Model Compartments considered in this study 

Compartment Description 

𝑆! Susceptible humans 

𝐼! Unmonitored infectious humans 

𝐽! Healthcare-seeking infected humans 

𝑅! Recovered humans 

𝑆" Susceptible mosquito vectors 

𝐼" Infectious mosquito vectors 
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In the proposed model illustrated in Figure 1, the susceptible 
human population 𝑆!(𝑡) increases as the total population 𝑁!(𝑡) 
grows logistically at a rate of 𝑏!, with growth constrained by a 
carrying capacity 𝐾!. Susceptible individuals are infected when 
an infected female mosquito bites them; here the mosquito 
population has a biting rate of 𝐵 per week, with a transmission 
probability of 𝐶"!. Because some individuals seek healthcare at 
the onset of symptoms, a fraction, 𝛼, of the infected population 
is added in 𝐽!(𝑡)  while the non-healthcare seeking infected 
individuals stay in the 𝐼!(𝑡) compartment. The recovery rate of 
non-healthcare-seeking individuals and the healthcare-seeking 
individuals are denoted by 𝛾  and 𝜃 , respectively, and the 
recovered individuals from 𝐼!(𝑡)  and 𝐽!(𝑡) move into the 𝑅!(𝑡) 
compartment. Finally, each class of the human population, 
𝑆!(𝑡), 𝐼!(𝑡), 𝐽!(𝑡), and 𝑅!(𝑡) has a mortality rate of 𝜇!. 
 
The susceptible vector population goes through a seasonal 
increase (over the year) at the rate of 𝑏"(𝑡), constrained by a 
carrying capacity 𝐾". The 𝑏"(𝑡) value takes note of the baseline 
(mean) value of the vectors’ oviposition 𝑏"#, the magnitude of 
its oscillation 𝑏"$ , and its peaks 𝑏"% . Mosquitoes then get 
infected at a rate of Chv by those individuals who have not 
received healthcare treatment (𝐼!) . Each class of the vector 
population has a seasonal yearly mortality rate of 𝜇"(𝑡) , 
whereby this incorporates the baseline (mean) values of the 
vectors’ mortality 𝜇"#, the magnitude of oscillation 𝜇"$, and its 
peaks 𝜇"%. 
 
 

 
Figure 1: Flow Diagram of (1) 

The model is described by the following system of 
ordinary differential equations (ODEs) where the time 
variable 𝑡 is measured in weeks: 
 
&'!())
&)

= 𝑏!𝑁!(𝑡) 21 −
+!())
,!

5 − 𝐵𝐶"!
-"())'!())
+!())

− 𝜇!𝑆!(𝑡), 
&-!())
&)

= (1 − 𝛼)𝐵𝐶"!
'!())-"())
+!())

− 𝛾𝐼!(𝑡) − 𝜇!𝐼!(𝑡), 
&.!())
&)

= 𝛼𝐵𝐶"!𝑆!(𝑡)
-"())
+!())

− 𝜃𝐽!(𝑡) − 𝜇!𝐼!(𝑡), 
&/!())
&)

= 𝛾𝐼!(𝑡) + 𝜃𝐽!(𝑡) − 𝜇!𝑅!(𝑡), 
&'"())
&)

= 𝑏"(𝑡)𝑁"(𝑡) 21 −
+"())
,"
5 − 7𝐵𝐶!"

-!())
+!())

+ 𝜇"(𝑡)8 𝑆"(𝑡), 
&-"())
&)

= 𝐵𝐶!"𝑆"
-!())
+!())

− 𝜇"(𝑡)𝐼"(𝑡), 
(1) 

 
 
 
 
 

where 
 

𝑏"(𝑡) = 𝑏"# 91 − 𝑏"$𝑐𝑜𝑠 7
2𝜋?𝑡 − 𝑏"%@

52 8B 

(2) 
 

𝜇"(𝑡) = 𝜇"# 91 − 𝜇"$𝑐𝑜𝑠 7
2𝜋?𝑡 − 𝜇"%@

52 8B 

(3) 
 

with nonnegative initial conditions 𝑆!(0), 𝐼!(0), 𝑅!(0), 𝑆"(0), 
and 𝐼"(0). 
 
In comparison to the model of de los Reyes and Escaner IV 
2018, we introduce the carrying capacity for the human 
population as well as the periodic behavior of the vector 
population growth. The model parameters are summarized in the 
following table. 
 
Table 2: Parameters used in the dengue transmission model. 

Parameter Description Units Range 
𝑏! Birth rate of humans human births per 

10,000 population 
per week 

[0,1] 

𝜇! Mortality rate of humans human deaths per 
10,000 population 

per week 

[0,1] 

𝐵 Vector biting rate number of bites per 
mosquito per week 

[0,4] 

𝐶!" Transmission probability from 
human to vector 

dimensionless [0,1] 

𝐶"! Transmission probability from 
vector to human 

dimensionless [0,1] 

𝛾 Non-seeking healthcare recovery 
rate 

proportions per 
week 

[0,1] 

𝜃 Healthcare-seeking recovery rate proportions per 
week 

[0,1] 

𝑏"# Mean per capita oviposition rate proportions per 
week 

[0,1] 

𝜇"# Mean mortality rate of vectors proportions per 
week 

[0,1] 

𝑏"$ Magnitude of oscillation of the 
oviposition rate 

dimensionless [0,1] 

𝜇"$ Magnitude of oscillation of 
vector mortality rate 

dimensionless [0,1] 

𝑏"% Determines the peaks the 
oviposition rate 

week [0,52] 

𝜇"% Determines the peaks of vector 
mortality rate 

week [0,52] 

𝐾! Human carrying capacity humans [0,3 × 106] 
𝐾" Vector carrying capacity mosquitoes [0,107] 
𝛼 Transition rate from susceptible 

to healthcare-seeking infected 
dimensionless [0,1] 

 
Existence 
The expressions for ODEs in equation (1) are composed of linear 
terms, rational terms, and time-dependent oscillatory functions. 
The linear terms in (1) as well as the trigonometric functions are 
Lipschitz continuous since they have bounded derivatives. The 
rational terms are also Lipschitz continuous as long as 
𝑁!(𝑡) , 𝐾! , 𝐾" ≥ 0 . Given 𝑁!(0) , 𝐾! , 𝐾" > 0 , the Picard-
Lindel¨of theorem guarantees that there exists a unique 
continuous solution to (1) for some interval [0, 𝑇] for 𝑇 > 0. If 
these values remain positive (which is shown in the next 
subsection), the Picard-Lindelöf theorem can be used to 

S v 

I v 

I h 

S h R h 

J h 

b v ( t )  1 − N v ( t ) 
K v  

b h  1 − N h ( t ) 
K h  

1 − α 

α 

γ 

θ 

BC hv 
BC vh 

µ v ( t ) 

µ h 

µ h 

µ h 

µ h 

µ v ( t ) 
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establish existence and uniqueness of solutions for the interval 
[0, +∞). 
 
Nonnegativity of Solutions 
The model describes human and mosquito population growth. 
For this to be biologically meaningful, the solutions 𝑆!(𝑡) ,	
𝐼!(𝑡) , 𝐽!(𝑡) , 𝑅!(𝑡) ,	 𝑆"(𝑡)  and 𝐼"(𝑡)  for each of the state 
variables, assuming non-negative initial data, should remain 
non-negative for all time t. That is, suppose 

 
(4) 

 
The total human and vector populations are 
 

𝑁!(𝑡) = 𝑆!(𝑡) + 𝐼!(𝑡) + 𝐽!(𝑡) + 𝑅!(𝑡) 
  

and 
 

𝑁"(𝑡) = 𝑆"(𝑡) + 𝐼"(𝑡), 
 
respectively. From the model equations, 
 

&+!())
&)

= 𝑏!𝑁!(𝑡) 21 −
+!())
,!

5 − 𝜇!𝑆!(𝑡), 
&+"())
&)

= 𝑏"(𝑡)𝑁"(𝑡) 21 −
+"())
,"
5 − 𝜇!(𝑡)𝑁"(𝑡), 

 
which are logistic equations with carrying capacity 𝐾! > 0 and 
𝐾" > 0 , respectively. Since the total human and vector 
populations have positive initial conditions less than the carrying 
capacity and assuming that the birth rates are larger than the 
death rates of each population, respectively, then we are assured 
that 0 < 𝑁!(𝑡) < 𝐾!and 0 < 𝑁"(𝑡) < 𝐾" for all 𝑡	 ≥ 	0. 
 
Now, starting with nonnegative initial population values for the 
compartments, due to the continuity of the expressions for the 
derivatives in the model, there exists 
 

𝑡∗ = sup{t > 0 ∶ 	 𝑆!(𝑡) ≥ 0, 𝐼!(𝑡) ≥ 0, 𝐽!(𝑡) ≥ 0, 𝑅!(𝑡)
≥ 0, 𝑆"(𝑡) ≥ 0, 𝐼"(𝑡) ≥ 0} ,	 

 
such that 𝑡∗ > 0. We have at 𝑡∗, 
 

&'!())
&)

+ 2𝐵𝐶"!
-"())
+!())

+ 𝜇!5 𝑆!(𝑡) ≥ 0, 
&.!())
&)

+ (𝜃 + 𝜇!)𝐽!(𝑡) ≥ 0, 
 

&-!())
&)

+ (𝛾 + 𝜇!)𝐼!(𝑡) ≥ 0, 
&/!())
&)

+ 𝜇!𝑅!(𝑡) ≥ 0. 
 

This results in 
 

𝑆!(𝑡∗) ≥ 𝑆!(0)𝑒
1∫ 345"!

#"(%)
'!(%)

67!8
(%%∗

* ≥ 0, 
𝐽!(𝑡∗) ≥ 𝐽!(0)𝑒1(967!)

%∗ ≥ 0, 
 

𝐼!(𝑡∗) ≥ 𝐼!(0)𝑒1(:67!)
%∗ ≥ 0, 

𝑅!(𝑡∗) ≥ 𝑅!(0)𝑒17!
%∗ ≥ 0. 

 
The same expressions for 𝑆"(𝑡∗) and 𝐼"(𝑡∗) given nonnegative 
values for both quantities. Hence all compartments have 
nonnegative population values. 
 
Boundedness 
For the model to be epidemiologically significant, all solutions 
must be bounded. Because each of the compartment contents for 

the human population are nonnegative values, we have, from the 
equation &+!())

&)
= 𝑏!𝑁!(𝑡) 21 −

+!())
,!

5 − 𝜇!𝑁!(𝑡)  that 
&+!())
&)

≤ 𝑏!𝑁!(𝑡) 21 −
+!())
,!

5 . This implies that 
𝑙𝑖𝑚	𝑠𝑢𝑝)→<𝑁!(𝑡) ≤ 𝐾! . So each of 𝑆! , 𝐼! , 𝐽! ,	 𝑅!  are also 
bounded by 𝐾!  in [0, +∞) . Hence each vector compartment 
population is also bounded by 𝐾"  in [0, +∞) . Therefore, the 
dengue transmission model described in (1) is well-posed, that 
is, the model solution exists, is unique given initial conditions, 
with nonnegative and bounded values for each population within 
the feasible region. 
 
Disease-free Periodic State 
The disease-free state occurs when the infected compartments 
𝐼! , 𝐽! ,	𝐼"	and recovered compartment 𝑅!  have zero elements. 
This implies 𝑆! = 𝑁!and 𝑆" = 𝑁". Our model (1) then reduces 
to 

𝑑𝑆!(𝑡)
𝑑𝑡 = \𝑏! 71 −

𝑆!(𝑡)
𝐾!

8 − 𝜇!] 𝑆!(𝑡) 

(5) 
𝑑𝑆"(𝑡)
𝑑𝑡 = \𝑏"(𝑡)71 −

𝑆"(𝑡)
𝐾"

8 − 𝜇"(𝑡)] 𝑆"(𝑡) 

(6) 
 
Denote by 𝐸∗ = (𝑆!∗ , 𝐼!∗ , 𝐽!∗ , 𝑅!∗ , 𝑆"∗, 𝐼"∗)  the steady state of our 
model. It is clear from the above equations that the trivial point 
𝐸= = (0,0,0,0,0,0)  and 𝐸> = (𝐾!(1 − 𝜇!/𝑏!), 0,0,0,0,0)  are 
equilibrium points of (1). System (1) also has a periodic steady-
state 

𝐸?(𝑡) = (𝐾!(1 − 𝜇!/𝑏!), 0,0,0, 𝑆"=(𝑡), 0) 
(7) 

 
where 𝑆"=(𝑡) = 𝐾" 21 −

7"())
@"())

5 . Note that 𝐸?(𝑡)  becomes an 
equilibrium point only when 𝑏"$ = 𝜇"$  and 𝑏"% = 𝜇"% . The 
state (0,0,0,0, 𝑆"=(𝑡), 0), though technically also a disease-free 
steady state, is not considered since we are interested in the 
epidemiological effect of dengue disease on human populations. 
 
Reproduction Number 
The basic reproduction number R0 describes the number of new 
infections caused by an infected individual in a disease-free 
susceptible population (Heesterbeek 2002). We consider using a 
time-averaged approach to calculate the basic reproduction 
number (Ma and Ma 2006; Wesley and Allen 2009). In this 
method, we replace any time-varying parameter with their 
longtime averages, reducing the system into an autonomous 
system. Note that we have two timedependent parameters, 
namely, 𝑏"(𝑡) and 𝜇"(𝑡). Since these parameters are periodic 
functions, the long time averages can be computed as 
 

〈𝑏"〉 =
>
A+
∫ 𝑏"(𝑡)
A+
= 𝑑𝑡 and 〈𝜇"〉 =

>
A,
∫ 𝜇"(𝑡)
A,
= 𝑑𝑡 

 
where 𝜔>  and 𝜔?  are the periods of 𝑏"(𝑡)  and 𝜇"(𝑡) , 
respectively. It is clear from (2) and (3) that the period is 𝜔> =
𝜔? = 52 and that 
 

〈𝑏"〉 = 𝑏"# and 〈𝜇"〉 = 𝜇"#. 
(8) 

 
Using such values instead of the time-dependent parameters is 
equivalent to finding the value of 𝑅= when the periodic disease-
free steady-state 𝐸?(𝑡) of (1) is an equilibrium point. 
 
To compute for the reproduction number, we proceed by using 
the method of the next generation matrix. Let 𝑥 =
(𝑥>, 𝑥?, 𝑥B)C ≔ (𝐼!, 𝐽!, 𝐼")C, where 𝐼!, 𝐽!, and 𝐼" are the infected 
states of the system. In order to compute for the value of 𝑅=, it 

𝑆!(0) ≥ 0, 𝐼!(0) ≥ 0, 𝐽!(0) ≥ 0, 𝑅!(0) ≥ 0, 𝐾! > 𝑁!(0) > 0, 
  𝑆"(0) ≥ 0, 𝐼"(0) ≥ 0, 𝐾" > 𝑁"(0) > 0. 



 

 
Vol. 18 (Supplement) | 2025                  SciEnggJ  431 

is important to distinguish new infections from all other changes 
in the population. For 𝑖 = 1,2,3, let ℱD(𝑥) be the input rate of 
new infections from 𝑥D , 𝒱D6(𝑥) be the rate of transfer into 𝑥D by 
all other means, and 𝒱D1 be the rate of transfer out of 𝑥D. Set  

ℱ(𝑥) = ?ℱ>(𝑥), ℱ?(𝑥), ℱB(𝑥)@
C, 

𝒱6(𝑥) = ?𝒱>6(𝑥), 𝒱?6(𝑥), 𝒱B6(𝑥)@
C, 

𝒱1(𝑥) = ?𝒱>1(𝑥), 𝒱?1(𝑥), 𝒱B1(𝑥)@
C, 

𝒱(𝑥) = 𝒱1(𝑥) − 𝒱6(𝑥). 
Recall that the infected compartments have the following 
dynamics: 

&-!())
&)

= (1 − 𝛼)𝐵𝐶"!
'!())-"())
+!())

− 𝛾𝐼!(𝑡) − 𝜇!𝐼!(𝑡), 
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It follows that 
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Define 𝐹 and 𝑉 as 
 

𝐹 = sFℱ&E. (𝐸
∗)t and 𝑉 = sF𝒱&E. (𝐸

∗)t, 

 
where 𝐸∗is some some equilibrium point. We now replace the 
periodic parameters by (8). Evaluating the matrices at the 
disease-free equilibrium (7) yields 
 

𝐹(𝐸?) =
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and 

 

𝑉(𝐸?) = u
𝛾 + 𝜇! 0 0
0 𝜃 + 𝜇! 0
0 0 𝜇"#

v. 

 
The basic reproduction number is the spectral radius of 
𝐹(𝐸?)𝑉1>(𝐸?), that is, the largest eigenvalue of the obtained 
next generation matrix. This gives 
 

𝑅= = w
𝐾" x1 −

𝜇"#
𝑏"#

y

𝐾! x1 −
𝜇!
𝑏!
y
	.
𝐵𝐶!"
𝛾 + 𝜇!

	 .
(1 − 𝛼)𝐵𝐶"!

𝜇"#
	 .			 

(9) 
 

Let us look at the components of 𝑅= . We see that the first 
multiplicand under square root, i.e., 𝐾" 21 −

7"/
@"/

5 /𝐾! 21 −
7!
@!
5, 

is in fact composed of the steady states of the disease-free 
dynamics (5)-(6), hence this represents the vector to host ratio. 
The number of vector infections caused by an infected host is 
represented by 45!"

:67!
 while the number of host infections caused 

by one infected vector is represented by (>1I)45"!
7"/

. Taking the 
geometric mean of the average secondary infections caused by a 
single host or vector gives the value of 𝑅=.  
 

With the use of time-averaged approach, the basic reproduction 
number 𝑅= only captures the onset of the spread of disease in the 
population. It fails to incorporate the introduced seasonality of 
vector populations. Thus, we also consider the effective 
reproduction number 𝑅J(𝑡), which quantifies the progression of 
the spread of the disease. The effective reproduction number can 
be computed by following the next generation matrix method 
without substituting the disease-free equilibrium (Fauzi et al. 
2022; S. Zhao et al. 2020). Thus, 
 

𝑅J(𝑡) = {
𝑁"(𝑡)
𝑁!(𝑡)

.
𝑆!(𝑡)
𝑁!(𝑡)

.
𝑆"(𝑡)
𝑁"(𝑡)

.
𝐵𝐶!"
𝛾 + 𝜇!

.
(1 − 𝛼)𝐵𝐶"!

𝜇"(𝑡)
	 .			 

(10) 
 
Sensitivity Analysis 
The dynamics of deterministic models are governed by the input 
parameters which may exhibit uncertainties. Thus, global 
sensitivity analysis is needed to determine which parameters 
largely affect the dynamics of the model given perturbations on 
the parameters (Agusto and Khan 2018; Marino et al. 2008; Wu 
et al. 2013). The partial rank correlation coefficient (PRCC) 
measures the sensitivity of an output state variable to parameter 
values as a linear correlation between the residuals. The PRCC 
values range between -1 and 1 and positive (negative) values 
indicate positive (negative) correlation of the model parameters 
and the state variable. The larger the absolute value of the PRCC, 
the greater the correlation of the parameter with the output. 
PRCC is often combined with latin hypercube sampling (LHS) 
to allow analysis of parameter variations across each uncertainty 
range (Wu et al. 2013; Agusto and Khan 2018). 
 
The LHS matrices are obtained by assuming that all the model 
parameters are uniformly distributed and that each parameter is 
sampled independently. A total of 1000 model simulations are 
done for each LHS using ±90% of the nominal values in Table 
2. A dummy variable is included to show that the sampling 
method is consistent and robust. The time points used are 
morbidity weeks 1 to 152. Figure 2 gives the PRCC values of 
the parameters with respect to the cumulative values of 𝐽! . 
According to Marino (2008), the PRCC sensitivity analysis 
method works well for non-linear monotonic relationships. 
 

 
Figure 2: PRCC values of model parameters in reference to 
healthcare-seeking class at morbidity weeks 1-152. The red region for 
each parameter represents the PRCC values at earlier weeks (1-76) 
and the blue region gives PRCC values for weeks (77-152). 

We see from Figure 2 that the parameters 𝐵 , 𝐶"! , and 𝜇"$  
influence cumulative 𝐽!  positively while parameters 𝜇"#, 𝛼, and 
𝛾 influence cumulative 𝐽!  negatively. It should be noted that the 
sensitivity of the parameters is different for each morbidity 
week. There is a high correlation of the said parameters with the 
cumulative 𝐽!  in the first few weeks of morbidity (25-30), then 
this gradually decreases for the next set of morbidity weeks. But 
the correlation of parameters 𝜇"#  and 𝛾  remains high 
throughout the given morbidity weeks. Control strategies that 
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reduce the value of parameters that positively influence the 
cumulative 𝐽!  or increase the value of the parameters that 
negatively influence the infected compartments should 
adequately reduce the spread of dengue infections in the city. 
 
 
SIMULATIONS, PARAMETER ESTIMATION, AND 
BOOTSTRAPPING 
 
Epidemiological Data 
The daily dengue incidence data from January 2011 to 
December 2022 acquired from Baguio City Health Service 
Office is used in this study. These were grouped by morbidity 
week over three-year periods shown in Figure 3. The graph 
shows the oscillating behavior in reported dengue cases over 
each three-year period. There are increasing peaks of dengue 
cases in morbidity weeks 25-35, 75-95, and 125-145. 
 

 
Figure 3: Reported dengue cases in Baguio City by morbidity week 
over three-year period from 2011-2022. 

Parameter Values and initial conditions 
The Philippines Statistics Authority (PSA) conducts a 
population census every 5 years. From their report in 2022 
(Philippine Statistics Authority 2022), the total Baguio 
population for years 2010, 2015 and 2020 are 318676, 345366, 
and 366358, respectively. The dynamics of the total population 
𝑁!  are then fitted based on these data to estimate the human birth 
rate 𝑏!  and the mortality rate 𝜇!  listed in Table 2. The best fit 

model is used to determine the Baguio population at the onset of 
each three-year cycle, see Table 3. 
 
Since there is no available data for the vector population, 
conservative estimates are used. Because of intervention 
measures like destroying mosquito breeding sites in Baguio 
City, we expect changes in the vector carrying capacity each 
year, but we set a maximum carrying capacity of the vector 
population to be 107. It is assumed that there are 2000 
susceptible vector and 40 infected vector at the start of each 
three-year cycle. The initial conditions of the other 
compartments in (1) are listed in Table 4. Here, we assume at 
the start of each three-year cycle that the number of recovered is 
half of the human population since we only assume a single 
strain of dengue virus. 
 
Table 3: Baguio population based on the best fit population model 𝑵𝒉 
at the onset of each 3-year cycle from 2011 – 2022. 

Year 𝑁!(0) 
2011–2013 318676 
2014-2016 335460 
2017-2019 335460 
2020-2022 362674 

 
Table 4: Initial conditions of each compartment used in (1). 

Parameter Values 
𝐽!(0) Data from morbidity week 1 
𝐼!(0) [0.5	. 𝐽!(0)] 
𝑅!(0) [0.5	. 𝑁!(0)] 
𝐽!(0) 𝑁!(0) − 𝐼!(0) − 𝐽!(0) − 𝑅!(0) 
𝑆"(0) 2000 
𝐼"(0) 40 

 
A summary of the parameter values used in the model 
identification are shown in Table 5. Conservative estimates were 
utilized for parameters with no known values and were subject 
for further parameter estimation based on data. 
 

Table 5: Parameter values used in the dengue transmission model. 
Parameter Value References 
𝑏! 0.0078 Data-fitted 
𝜇! 0.0063 Data-fitted 
𝐵 1 (Lizarralde-Bejarano et al. 2017; Twizell et al. 2003) 
𝐶!" 0.75 (Lizarralde-Bejarano et al. 2017; Twizell et al. 2003) 
𝐶"! 0.375 (Lizarralde-Bejarano et al. 2017; Twizell et al. 2003) 
𝛾 0.5 (Lizarralde-Bejarano et al. 2017) 
𝜃 1 (Lizarralde-Bejarano et al. 2017) 
𝑏"# 0.4 Estimated 
𝜇"# 0.8 Estimated 
𝑏"$ 0.2 Estimated 
𝜇"$ 0.2 Estimated 
𝑏"% 1 Estimated 
𝜇"% 3 Estimated 
𝐾! 2,215,141 (Baguio City Public Information Office 2022) 
𝐾" 106 Estimated 
𝛼 0.2 Estimated 

Model Identification 
We now estimate the parameters in order to fit our model to the 
reported data. To capture the observed seasonality, the model is 
fitted for the morbidity weeks over each three-year period. The 
parameters 𝛼, 𝐵, 𝐶"!, 𝐶!"  which control the transition of the 
susceptible human to healthcare-seeking infected compartments 
as well as 𝑏"#, 𝑏"$, 𝑏"%, 𝜇"#, 𝜇"%  and 𝐾"  which describe the 
vector population are considered. The model output considered 
is the healthcare-seeking infected human 𝐽!  which is the 

available epidemiological data. Parameter estimation is 
employed for each of the parameters by minimizing the sum of 
least square errors between the model output and reported data 
for each morbidity week in each three-year period. This is 
carried out using the lsqcurvefit function in MATLAB. 
The values of the parameter estimates are found in Table 6. The 
parameter estimates are then used to solve (1) using ode45 in 
MATLAB and the resulting dynamics of 𝐽!is compared to the 
available data, as seen in Figure 4. The evolution of the 
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susceptible and infectious vector population based on the 
estimated parameters are shown in Figure 5. 
 
It can be deduced from Table 6 that it was during the period of 
2014−2016 that the transition rate from susceptible to the 
infected class seeking healthcare 𝛼  had the lowest estimated 
value. In contrast, the value of 𝛼  is seen to increase in the 
succeeding years. The vector biting rate 𝐵  had the largest 
estimated values while the carrying capacity 𝐾"  had the least 
estimated values for the years 2017−2019. The value of the 
computed basic reproduction number 𝑅= is larger on years 2014 
− 2016 and 2020 − 2022 as compared to the other years. The 
effective reproduction number 𝑅J(𝑡)  shown in Figure 4, 
captures the onset of the surge of reported cases in each year. 
 

       
           (a) Years 2011 – 2013                             (b) Years 2014 – 2016 

 
              (c) Years 2017 – 2019                             (d) Years 2020 – 2022 
Figure 4: Plot of data (red circles) VS model values (black curve) and 
the effective reproduction number 𝑅1(𝑡)  (blue curve in logarithmic 
scale) of best fit model. 

 
           (a) Years 2011 – 2013                             (b) Years 2014 – 2016 

 
              (c) Years 2017 – 2019                             (d) Years 2020 – 2022 
Figure 5: Logarithmic scale plot of susceptible (𝑺𝒗) and infected (𝑰𝒗) 
vector population of best fit model. 

Bootstrapping 
We employ parametric bootstrapping in order to quantify 
parameter uncertainty and construct confidence intervals. This 
method involves repeatedly sampling multiple observations 
from the best fit model in order to quantify parameter 
uncertainty using Poisson distribution, centered on the mean at 
the time points t (Chowell 2017). As mentioned, we re-estimated 
parameters for each of the 1,000 simulated synthetic datasets (as 
shown in Figures 8 and 9 in the appendix). The mean and 
standard deviation of the datasets are also shown in the 
appendix. The confidence interval of the re-estimated 
parameters are shown in Table 7. This shows that the best fit 
model parameter values (see Table 6) are within ± standard 
deviations of the mean values of the re-estimated parameters. 
 
The shaded region (in cyan) in the plot for each of the 3-year 
periods, as seen in Figure 6, indicates the 95% confidence 
interval. The results provide a good confidence level for the 
parameter estimates, which implies that the values of the 
parameters estimated for each 3-year period are reliable. 
 

Table 6: Estimated parameters from data through different time periods. 
Year 𝛼 𝐵 𝐶"! 𝐶!" 𝐾"/10K 

2011-2013 0.0523 3.2554 0.9052 0.8686 0.0035 
2014-2016 0.0198 1.9606 0.9389 0.3472 0.0149 
2017-2019 0.0339 4 1 1 0.0036 
2020-2022 0.0471 2.6131 0.7657 0.8459 0.0090 

 
Year 𝑏"# 𝜇"# 𝑏"$ 𝜇"$ 𝑏"% 𝜇"% 𝑅= 

2011-2013 0.7564 0.3558 1.0000 1.0000 4.2367 10.9739 1.3908 
2014-2016 0.5498 0.1968 1.0000 0.9757 5.1804 13.6949 1.6747 
2017-2019 0.6265 0.4105 1.0000 0.7766 1.0485e-12 4.9139 1.4867 
2020-2022 0.4090 0.2559 0.9694 1 1.5585e-05 7.2035 1.6125 

Table 7: 95% confidence intervals of parameters from bootstrapping through different time periods. 
Parameters 2011-2013 2014-2016 2017-2019 2020-2022 

𝛼 [0.0456, 0.0610] [0.0188, 0.0211] [0.0305, 0.0427] [0.0447, 0.0497] 
𝐵                                                                                                                                                                                                            [3.0609, 3.6553] [1.7482, 2.6042] [3.9167, 4.0501] [2.4629, 3.2329] 
𝐶"! [0.8652, 0.9635] [0.8030, 1] [0.9615, 1] [0.6992, 0.8723] 
𝐶!" [0.8173, 0.9494] [0.1877, 0.5665] [0.9726, 1] [0.7287, 0.9665] 

𝐾"/10K [0.0022, 0.0052] [0.0082, 0.0233] [0.0030, 0.0043] [0.0060, 0.0098] 
𝑏"# [0.6658, 0.8413] [0.4639, 0.7329] [0.5732, 0.6585] [0.3578, 0.4970] 
𝜇"# [0.3100, 0.4249] [0.1739, 0.2467] [0.3664, 0.4357] [0.2216, 0.3109] 
𝑏"$ [0.8858, 1] [0.8907, 1] [0.9475, 1] [0.7880, 1] 
𝜇"$ [0.8911, 1] [0.8711, 1] [0.7363, 0.8063] [0.9152, 1] 
𝑏"% [2.5883, 5.6094] [3.7188, 7.3488] [0, 0.6543] [0, 2.2258] 
𝜇"% [9.0476, 12.5342] [11.7970, 15.9821] [4.2584, 6.3356] [6.5500, 9.1745] 
𝑅= [1.3282, 1.4278] [1.5919, 1.6988] [1.4526, 1.4993] [1.5188, 1.6300] 
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           (a) Years 2011 – 2013                             (b) Years 2014 – 2016 

 
              (c) Years 2017 – 2019                             (d) Years 2020 – 2022 
Figure 6: Plot of data (red circles) VS model values (black curve) VS 
synthetic models (cyan curve) after parameter estimation. 

 
DISCUSSION 
 
Current knowledge on dengue transmission in Baguio City 
is obtained from statistical and mathematical modeling 
studies (Marigmen and Addawe 2022a, 2022b; Marigmen 
2024; Libatique et al. 2017). From these studies, seasonal 
patterns have been observed, and the highest incidence of 
dengue cases occurs between June and July of each year 
(Marigmen 2024). In the Philippines, epidemiologically 
important parameter values related to dengue transmission, 
like the mosquito biting rate 𝐵  and transition rate from 
susceptible to healthcare-seeking infected humans, have 
also been identified using compartmental models (de los 
Reyes and Escaner IV 2018). However, specific values for 
Baguio City have not been identified. 
 
In this study, we consider a well-posed mathematical model 
that incorporates the dynamics of the mosquito population 
over a 3-year span. The model parameters are calibrated to 
dengue incidence data in Baguio City from 2011 to 2022. 
This modification of earlier models and its fitting to the 
Baguio dengue incidence data is a significant contribution 
in the study of dengue transmission in Baguio City. To the 
best of our knowledge, there are no available studies on 
mosquito dynamics as this affects dengue transmission in 
Baguio. 
 
We further incorporate a carrying capacity for the human 
population and periodic growth of the vector, as a 
refinement to the model of de los Reyes and Escaner IV 
(2018). Incorporating human carrying capacity into the 
model provides realistic dynamics of human population 
growth in an environment with limited resources. This gives 
logistic growth rather than exponential growth. Moreover, 
introducing periodic vector population growth into the 
model captures seasonal fluctuations in mosquito population 
due to climatic and environmental factors. 
 
Baguio City has a wet season from May to October and a 
dry season from November to April. The city is in the 
highlands and sits on a typhoon belt, hence the unpredictable 
weather experienced. (Chepenlianskaia and Khan 2023). 
Taking this into account and the fact that the life cycle of a 
mosquito is dependent on climate, the model incorporates a 
time-varying vector population growth rate derived from the 
study of Mancuso et al. (Chandra and Mukherjee 2022; 
Mancuso et al. 2023). The time-varying vector population 
of Mancuso et al. has been used in epidemiological studies 
such as in studies on the West Nile virus transmission, 
however, integration of this into dengue transmission has 
not yet been done. (Mancuso 2023). To our knowledge, 
there have not been studies in the Philippines that include 
time-varying vector population growth in the transmission 
of dengue or any vector-borne disease. 
 

The intent of this enhancement on previous models is to 
better capture and visualize the dynamics of dengue-infected 
mosquitoes in the city. The inclusion of a time-varying 
vector population in the model adds insight into the 
observed pattern (from Baguio data for years 2011 to 2022) 
of disease progression over three-year periods. Study results 
can be referred to in assessing whether vector management 
initiatives implemented by the Baguio City Local 
Government Unit are effective in the prevention of dengue 
outbreaks. Simulations using the model with parameter 
values derived from data should be helpful in formulating 
policy on the management of vector populations. 
 
Figure 3 shows a surge in dengue cases during the period 
2014 − 2016. This may be due in part to the low value of 𝛼, 
i.e. a large proportion of dengue-infected individuals did not 
seek hospitalization. This estimated value for 𝛼  in 
2014−2016 is comparable to the estimates of de los Reyes 
and Escaner (2018) for the years 2014 and 2015, which are 
low values as well. 
 
Notably, it was in 2016 when City Ordinance No. 66 series 
of 2016 (called the ”Anti-Dengue Ordinance of the City of 
Baguio”) was first implemented (Refuerzo 2024a). This 
measure may have increased dengue awareness in the 
community and as a result, substantially increased the 
proportion of infected individuals seeking healthcare in the 
succeeding years. Figure 3 shows a significant decrease in 
dengue infections in the years 2017 − 2019. 
 
The reduction in mosquito carrying capacity is notable in 
2017 − 2019 and is likely attributable to LGU efforts in 
vector population control. The sustained effort of the city to 
destroy mosquito breeding sites is apparent in the decrease 
of 𝐾"  from the years 2014 − 2016 and 2017 − 2019. 
 
The estimated biting rate for all periods is well within the 
epidemiologically accepted ranges (Lizarralde-Bejarano et 
al. 2017; Zahid et al. 2023). The changes in the parameter 
values will have to be further investigated as this may be 
affected by climatic factors. 
 
The 𝑅= values 1.67 and 1.61 in the years 2014 − 2016 and 
2020 − 2022, respectively, are larger, compared to that in 
other years since there is a surge in the number of reported 
dengue cases during these years. In fact, 𝑅= 	≈ 1.67 in the 
years 2014 − 2016 is close to the measured 𝑅= 	≈ 1.62 in 
2014 by de los Reyes and Escaner IV (2018). 
 
The estimated seasonal parameter values suggest that there 
is a year-round abundance of mosquitoes, with strong surges 
during the rainy season (see Figure 5). This observation is 
consistent with the findings in (Marigmen and Addawe 
2022a), indicating that climatic factors such as increased 
precipitation led to more favorable breeding sites, 
consequently raising dengue incidence in the city. Hence, 
sustained efforts to control and eradicate mosquito breeding 
grounds should be maintained throughout the year. This 
suggests that vector-control interventions such as fogging 
and community-based cleaning efforts are indeed effective 
measures in mitigating the risk of dengue outbreaks. Further, 
observations regarding seasonal fluctuations in vector 
population as well as multi-year cycles of disease incidence 
would be crucial in formulating strategies for disease control, 
including the matter of lead times for implementation of 
mitigation measures. Progression of the (time-dependent) 
effective reproduction number, see for instance Figure 5, 
can provide guidance as to timing and intensity of 
application of mitigation measures. In the future, more 
advanced interventions, such as the use of Wolbachia-
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infected mosquitoes (Dorigatti et al. 2018), can also be 
considered. 
 
The study has had the benefit of access to dengue incidence 
data covering over 10 years (2011 - 2022). This is significant 
as study results can then be utilized by local government to 
make prospective forecasts of disease incidence. The model 
also allows us to estimate the number of dengue infected 
individuals who did not seek healthcare, which is not 
accounted for in the data. Parameter estimates and 
observations on vector dynamics can be referred to in 
determining optimal timing, intensity and duration of 
application of control and mitigation measures, to ensure 
good outcomes. This can be simulated through our model by 
adding, for instance, a “harvesting” term in the susceptible 
vector compartment i.e., 
 

𝑑𝑆!(𝑡)
𝑑𝑡 = 𝑏!(𝑡)𝑁!(𝑡) R1 −

𝑁!(𝑡)
𝐾!

V − W𝐵𝐶"!
𝐼"(𝑡)
𝑁"(𝑡)

+ 𝜇!(𝑡)] 𝑆!(𝑡) − 𝑁𝐻! 

(11) 
 

where 
 

𝐻 = �𝑐 𝑖𝑓	𝜏 ≤ 𝑡 ≤ 𝜏 + 𝑑𝐻 =
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,  

 
annually for three years. Here, 𝜏 denotes the week when we 
start reducing vector population, 𝑑 for the duration in weeks 
of the process per year, and c for the percentage of removed 

vector population. In the simulation shown in Figure 7 for 
the years 2011-2013 where parameters of the best fit model 
were used, we see the effect of reducing by 0.1 the vector 
population for a duration of 5 weeks at different starting 
points. In this scenario, it is best to start reducing the vector 
population on morbidity week 45 of each year to reduce the 
number of dengue patients (black line vs red dashed line). 
We intend to explore optimal cycle and duration in the 
succeeding studies. 
 
The inclusion of sinusoidal vector birth and death rates in 
model (1) makes it highly nonlinear. This means that the 
model is sensitive to initial conditions. Parameter estimates 
can be made closer to real life scenario by using real data 
instead of conservative assumptions, e.g. on initial number 
of susceptible and infected vectors. The sinusoidal vector 
birth and death rates in the model do not explicitly account 
for factors affecting these. These rates simply describe the 
observed seasonality of mosquito population levels. 
Incorporating factors like environmental conditions, 
population density, and human mobility, which impact such 
seasonality could lead to better understanding of the effect 
of these factors on the spread of dengue disease. One could 
also modify the model to include multiple strains of dengue. 
In fact, there are host-host and host-vector multi-strain 
dengue models in literature that also observed seasonal 
dengue epidemics (see Aguiar et al. 2011; Lourenço and 
Recker 2013; Rashkov and Kooi 2021). 
 

 
Figure 7: Plot of 2011-2013 best fit model (black line) vs new estimates (red dashed-line) after vector reduction. Yellow bars indicate the duration (5 
weeks) of vector reduction (0.1) starting at the given morbidity weeks for each year. 

Finally, optimal model parameter values were obtained using 
numerical methods. Specifically, these values represent local 
solutions to a given minimization problem and may not 
necessarily fall within epidemiologically accepted ranges. 
Moreover, multiple sets of parameter values can produce similar 
model outputs (Pope et al. 2009). To address this, we used initial 
parameter values informed by related studies and data from 

Baguio City and the Philippines. This approach helped ensure 
that our local solution is reasonably close to the true solution. 
Additionally, the model was successfully calibrated to dengue 
incidence data in Baguio City from 2011 to 2022. 
 
Here are the histograms of the parameters from bootstrapping. 
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Figure 8: Histogram of estimated parameters obtained from bootstrapping. The green line indicates the mean value of the estimated parameters 
obtained from bootstrapping, and the blue line indicates the estimated parameters obtained from actual data, and the red line represents the lower and 
upper bounds of the 95% confidence interval.

 
Figure 9: Histogram of estimated parameters obtained from bootstrapping. The green line indicates the mean value of the estimated parameters 
obtained from bootstrapping, and the blue line indicates the estimated parameters obtained from actual data, and the red line represents the lower and 
upper bounds of the 95% confidence interval.
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CONCLUSION 
 
The dengue disease model presented by de los Reyes and 
Escaner (2018) was modified to analyze dengue incidence in 
Baguio City from 2011 to 2022, stratified into three-year cycles. 
The model incorporates periodic growth rates for vectors and 
carrying capacities for both host and vector populations. The 
model was proven to be well-posed, and the averaged and 
effective reproduction numbers were computed. Sensitivity 
analysis revealed that epidemiologically important parameters 
such as the transition rate from infected to hospitalized humans, 
vector biting rate, and bidirectional transmission probabilities, 
are highly sensitive. Parameter values were determined using a 
constrained-ODE optimization routine, with confidence 
intervals obtained via bootstrapping. The estimated parameters 
accurately capture strong surges in the mosquito population 
during rainy seasons. Notably, a reduction in mosquito carrying 
capacity observed from 2017 to 2019 is likely attributable to 
Local Government Unit (LGU) vector control efforts. These 
parameter estimates and insights into vector dynamics can serve 
as a reference for determining the optimal application of control 
and mitigation measures. 
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