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ABSTRACT

aguio City’s dengue incidence data for years 2011 to

2022 exhibit three-year cycles of increasing

amplitudes. However, current epidemiological

models do not capture this behavior. This study

modifies the dengue disease model presented in the
paper by de los Reyes and Escaner (2018), introducing two key
modifications: (1) incorporating logistic growth in the human
population and (2) including seasonality in mosquito population
growth. With the observed multi-year cycles for disease
progression in the city, the model is calibrated to Baguio data to
estimate epidemiologically important parameters such as
transition rate from susceptible to hospitalized humans, vector
biting rate, transmission probability from human to vector and
vector to human. A constrained-ODE optimization routine is
used to determine model parameter values that produce model
curves capturing the dynamics of dengue incidence in Baguio.
Using these estimated parameters, simulations are presented
with variations observed over cycles each spanning 3 years.
Reproduction numbers are calculated, with values ranging from
1.39 (2011-2013) to 1.67 (2014-2016). Sensitivity analysis and
parameter bootstrapping are also performed to determine
confidence intervals. Results of the study yield city-specific
parameter estimates which can guide policy makers in
forecasting, in evaluating the impact of interventions, as well as
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in making decisions towards optimizing the timing and intensity
of vector-control measures.

INTRODUCTION

Dengue is a human viral infection primarily transmitted to
humans by the bite of female mosquitoes in the Aedes genus,
mainly by Adedes aegypti and in some cases, by Aedes albopictus
(Bhatt et al. 2013). Symptoms, which usually manifest 4 — 10
days after infection, include high fever, vomiting, and rashes,
while a majority of cases are asymptomatic. Secondary
infections have a greater risk of severe dengue and may lead to
death (World Health Organization 2024).

Dengue incidence has surged significantly in recent decades,
with reported cases rising from 500 thousand in 2000 (World
Health Organization 2023) to more than 14 million in 2024
(European Centre for Disease Prevention and Control 2024).
However, the reported cases substantially undertestimate the
true scale of the dengue epidemic, as many countries lack robust
detection and reporting mechanisms. One study suggests that
approximately 390 million people are infected each year, with
the majority of cases occurring in the Asia-Pacific region (Bhatt
et al. 2013). In the Philippines, the Department of Health
reported 43,732 dengue cases from January to February, 2025,
which is 56% higher than the cases recorded for the same period
in 2024 (Department of Health 2025). The City Health Services
Office of Baguio City, Philippines reported 260 dengue cases
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from January to April, 2025, with 93 admitted to the hospital
(Refuerzo 2024b).

The Communicable Disease Control Service of the Department
of Health in the Philippines (DOH), formulated the National
Dengue Prevention and Control Programme, initially piloted in
Region 7 and the National Capital Region (NCR) of the
Philippines (Dominguez 1997). The program aims to reduce
dengue morbidity and mortality rates by integrated vector
control, effective case diagnosis and management, fever
surveillance, epidemic contingency planning and research. The
DOH also encouraged the community to apply the enhanced 4S
strategy as well as implementation of other program policies and
guidelines (see Department of Health n.d.). In Baguio City, the
city government implemented Ordinance No. 66 series of 2016
called the “Anti-Dengue Ordinance of the City of Baguio”
(Refuerzo 2024a). The ordinance aims to enhance case
surveillance, public awareness campaign and clean-up drives
throughout the city. The city also conducts ““Denguerra’” (War
against Dengue) program’, a clean-up drive by barangay
officials, police officers, and residents to search for and destroy
mosquito breeding sites every Thursday. To intensify case
surveillance, an online system for citizen self-reporting was also
launched (Refuerzo 2024b).

Mathematical models study the spread of communicable
diseases to gain insights for control strategies (Brauer 2017). In
the Philippines, these mathematical models incorporating
dengue incidence are mostly composed of statistical and
compartmental models. Statistical models use correlation and
time-series analysis to understand climatic and environmental
factors that affect dengue-related mortality and forecast
epidemics (Acosta and Nacion 2024; Seposo et al. 2024;
Marigmen and Addawe 2022b; Marigmen and Addawe 2022a).
Deterministic models use compartments whose interactions are
described using differential equations to capture the evolution of
infections and describe the parameters that greatly affect the
dynamics (Cawiding et al. 2025; de los Reyes and Escaner IV
2018; Libatique et al. 2017). The study of de los Reyes and
Escaner IV (2018), in particular, modified a susceptible-
infected-removed (SIR) vector-host transmission model by
incorporating a compartment for individuals who seek
healthcare at the onset of the disease. Using the reported
Philippine dengue incidence data obtained from years 2014 to
2015, they were able to fit their model and estimate parameter
values. Their findings indicate that very few dengue-infected
individuals seek treatment.

Southeast Asian countries, where dengue virus is endemic,
observe a surge of dengue cases during specific months of the
year. This includes many parts of Indonesia (Fauzi et al. 2022;
Dhewantara et al. 2019), Thailand (Phanitchat et al. 2019),
Singapore (Rajarethinam et al. 2018), Vietnam (Col on-
Gonz’alez et al. 2021) and Philippines (Seposo et al. 2024). For
instance in Baguio City, Philippines, dengue cases are observed
to increase from June to July and decrease from August to
December (Marigmen 2024). Interestingly, data on dengue
incidence in Baguio City from 2011 to 2024 call attention to
apparent cyclic behavior over three-year periods, see Figure 3.
This observed seasonality of dengue cases is often attributed to
climatic factors like precipitation and temperature, population
density, and human mobility (Cawiding et al. 2025; Marigmen
and Addawe 2022a; Zhu et al. 2019; Costa et al. 2022).

Several models have been introduced in the literature to capture
the seasonality of dengue epidemics. For instance, Aguiar,
Ballesteros, and Stollenwerk (2011) added a seasonal forcing
(using a cosine function) into a two-strain host-host dengue
model and showed good comparison to seasonal empirical
dengue data. Lourenco and Reccker (2013) observed multi-

annual dengue epidemic outbreaks in their proposed spatially
explicit, multi-strain agent-based model. Rashkov and Kooi
(2021) used cosine waves to describe seasonally changing
mosquito populations in a two-strain host-vector model. The
bifurcation analysis of their model asserts the importance of
incorporating seasonal mosquito population dynamics in
studying yearly spikes of dengue incidences. They remarked that
annual periodic dengue epidemics are due to the periodicity of
mosquito populations.

Focusing only on mosquito population dynamics, Mancuso and
collaborators (2023) used a non-autonomous logistic model of
mosquito population with periodic net growth rate and carrying
capacity. The resulting parameters accurately capture the inter-
annual and intraseasonal variability of mosquito populations
within a single geographic region. A variancebased sensitivity
analysis highlights the influence each parameter has on the peak
magnitude and timing of the mosquito season.

In this study, we include the seasonal pattern of mosquito
population growth observed by Lourenco (2013) and Mancuso
(2023) and their respective collaborators, and modify the
compartmental model introduced by de los Reyes and Escaner
IV (2018). This is not only to fit the yearly dengue incidence rate
in Baguio City but also to capture the 3-year cycle of increasing
amplitudes of dengue infection in the city. Sensitive parameters
of the model are determined using partial rank correlation
coefficient (PRCC). Unknown parameter values are estimated
by fitting the model to the data from the Baguio City Health
Services Office (HSO). Confidence intervals of the estimated
parameters are also obtained through bootstrapping. This model,
as well as the parameter values, can be used to forecast dengue
infections in the city and can serve as guide for policy-making.

The paper is organized as follows. The construction and analysis
of the model is discussed in Section 2. The computation of the
reproduction number as well as the sensitivity analysis of
parameters are also included in this section. We then provide
parameter estimation, bootstrapping and simulations in Section
3. Finally, discussions and recommendations are summarized in
the last section.

A MODEL OF DENGUE TRANSMISSION

Model construction

We consider the single-strain host-vector compartments
introduced by de los Reyes and Escaner IV (2018). The
susceptible (Sy), the unhospitalized or unmonitored infectious
(1), the healthcare-seeking infected (J,), and the removed or
recovered (Ry) individuals constitute the human population.
The sum of these populations is denoted by Ny, (t). Similarly, the
susceptible (S,), and the infectious (I,) vectors constitute the
vector population. The sum of these two classes is the total
vector population, denoted by N,,(t). We include in our model a
carrying capacity Kj for humans and K,, for vectors.

Table 1: Model Compartments considered in this study

Compartment Description
Sn Susceptible humans
Iy Unmonitored infectious humans
Jn Healthcare-seeking infected humans
Ry, Recovered humans
Sy Susceptible mosquito vectors
I, Infectious mosquito vectors
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In the proposed model illustrated in Figure 1, the susceptible
human population Sy (t) increases as the total population Ny, (t)
grows logistically at a rate of by, with growth constrained by a
carrying capacity Kj. Susceptible individuals are infected when
an infected female mosquito bites them; here the mosquito
population has a biting rate of B per week, with a transmission
probability of C,;,. Because some individuals seek healthcare at
the onset of symptoms, a fraction, a, of the infected population
is added in J,(t) while the non-healthcare seeking infected
individuals stay in the I, (t) compartment. The recovery rate of
non-healthcare-seeking individuals and the healthcare-seeking
individuals are denoted by y and 6, respectively, and the
recovered individuals from I, (t) and Jj, (t) move into the Ry, (t)
compartment. Finally, each class of the human population,
Sp(®), In(t), Jn(t), and Ry (t) has a mortality rate of pp,.

The susceptible vector population goes through a seasonal
increase (over the year) at the rate of b, (t), constrained by a
carrying capacity K. The b, (t) value takes note of the baseline
(mean) value of the vectors’ oviposition b,,,, the magnitude of
its oscillation by, and its peaks b, . Mosquitoes then get
infected at a rate of Cj, by those individuals who have not
received healthcare treatment (I,,). Each class of the vector
population has a seasonal yearly mortality rate of u,(t),
whereby this incorporates the baseline (mean) values of the
vectors’ mortality p,,,,, the magnitude of oscillation p,5, and its

peaks fiy,;,.

Iv uv(t)
h(n) 1- M9 ;
wity — G- By " U
:y \
Nplt)

Figure 1: Flow Diagram of (1)

The model is described by the following system of
ordinary differential equations (ODEs) where the time
variable t is measured in weeks:

dsp(t) L,(B)S(t)

Np(t)
— = baNp () (1 - ;—h) =BGy~ HaSu(D),
T = (1= @BC 12— yI(O) = mn (O,

djp(t I,(t

L“ = aBCSu() 12 = OJn(®) — uala(2),

dRh(f)

=yI(t) + 0Jp(8) — ppRR (1),
‘”"“) = by (OON,(6) (1 -2 — (Bch,, = #v(ﬂ)su(t)a

Np(t)
— My (t)lv (t)a

dlv(r)

In(t)
22 = BCyySy 1

Y NR(®)

(M

where

2m(t —
bv(t) = bvm 1-—- bvsCOS< n( 52 vp))

@

2n(t - u,,p)>

Au'li(t) = Hvm 1- ﬂvSCOS< 52
(€)

with nonnegative initial conditions S}, (0), I,(0), R, (0), S,,(0),
and ,(0).

In comparison to the model of de los Reyes and Escaner IV
2018, we introduce the carrying capacity for the human
population as well as the periodic behavior of the vector
population growth. The model parameters are summarized in the
following table.

Table 2: Parameters used in the dengue transmission model.

Parameter Description Units Range
b,  Birth rate of humans human births per [0,1]
10,000 population
per week
Un  Mortality rate of humans human deaths per [0,1]
10,000 population
per week
B Vector biting rate number of bites per [0,4]
mosquito per week
Cyy, Transmission probability from dimensionless [0,1]
human to vector
Cyn  Transmission probability from dimensionless [0,1]
vector to human
y  Non-seeking healthcare recovery  proportions per [0,1]
rate week
6  Healthcare-seeking recovery rate  proportions per [0,1]
week
by,m  Mean per capita oviposition rate  proportions per [0,1]
week
Uym  Mean mortality rate of vectors proportions per [0,1]
week
b,s  Magnitude of oscillation of the dimensionless [0,1]
oviposition rate
Uys  Magnitude of oscillation of dimensionless [0,1]
vector mortality rate
by,  Determines the peaks the week [0,52]
oviposition rate
Upp  Determines the peaks of vector week [0,52]
mortality rate
K,  Human carrying capacity humans [0,3 x 10°]
K, Vector carrying capacity mosquitoes [0,107]
a  Transition rate from susceptible dimensionless [0,1]
to healthcare-seeking infected
Existence

The expressions for ODEs in equation (1) are composed of linear
terms, rational terms, and time-dependent oscillatory functions.
The linear terms in (1) as well as the trigonometric functions are
Lipschitz continuous since they have bounded derivatives. The
rational terms are also Lipschitz continuous as long as
Ny (t), Ky, ,K, = 0. Given N,(0), K} ,K, >0, the Picard-
Lindel"of theorem guarantees that there exists a unique
continuous solution to (1) for some interval [0, T] for T > 0. If
these values remain positive (which is shown in the next
subsection), the Picard-Lindel6f theorem can be used to
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$,(0) =0,

establish existence and uniqueness of solutions for the interval
[0, +0).

Nonnegativity of Solutions

The model describes human and mosquito population growth.
For this to be biologically meaningful, the solutions Sj(t),
L,@), Jn(@®), Ry(t), S,(t) and I,(t) for each of the state
variables, assuming non-negative initial data, should remain
non-negative for all time ¢. That is, suppose

,(0)=0, J,(0) =0,

$,(0) = 0,

R,(0) = 0,
1,(0) = 0,

K, > N,(0) >0,

“)
The total human and vector populations are
Np(8) = Sp(t) + I, (8) + ] (t) + Ru(0)
and
N, (t) = S, (8) + I, (1),

respectively. From the model equations,

T = b () (1 = "22) — S (0),

dat K,
T = b, (DN, (1= 22) = i (ON, ),

which are logistic equations with carrying capacity K, > 0 and
K, > 0, respectively. Since the total human and vector
populations have positive initial conditions less than the carrying
capacity and assuming that the birth rates are larger than the
death rates of each population, respectively, then we are assured
that 0 < N, (t) < Kpand 0 < N, (t) < K, forallt > 0.

Now, starting with nonnegative initial population values for the
compartments, due to the continuity of the expressions for the

derivatives in the model, there exists

t* =sup{t>0: S,(t) =0,1,(t) =0,J,(t) = 0,R,(t)
>0,5,(t) =0,1,(t) =0},

such that t* > 0. We have at t*,

dsp(t) L,(t)
T (Bth ot Mn) Sp() =0,
d]h(t)

+ (6 + pup)Jp(t) 2 0,

dl (t
O 4 + ) 2 0,

dRh(t) + upRy(t) = 0.

This results in

o

_ o,
Su(t?) = Sp(0)e” o (remiiiim) 5
Jn(t?) = Ju(0)e= @+ > 0,

il

(") = 1,(0)e~ " >,
Ry (t*) = R, (0)e " > 0.

The same expressions for S,(t*) and I,,(t*) given nonnegative
values for both quantities. Hence all compartments have
nonnegative population values.

Boundedness
For the model to be epidemiologically significant, all solutions
must be bounded. Because each of the compartment contents for

K, > N,(0) > 0.

the human population are nonnegative values, we have, from the
equation th(t) = b, Ny, (t) ( N}”é—(t)) — up N, () that
h

th(t) < thh(t)( N;—it)) . This  implies that

llm SUPt 0Ny (t) < Kj, . So each of Sy, I, J,, Ry are also
bounded by K in [0,4+). Hence each vector compartment
population is also bounded by K, in [0, +00). Therefore, the
dengue transmission model described in (1) is well-posed, that
is, the model solution exists, is unique given initial conditions,
with nonnegative and bounded values for each population within
the feasible region.

Disease-free Periodic State

The disease-free state occurs when the infected compartments
Iy, Jn, I, and recovered compartment R, have zero elements.
This implies S, = Nyand S, = N,,. Our model (1) then reduces

to
dS;(t) [bh <1 - Sh(t)) - #h] Su(t)
t Kp
ds S ©
v t v
o2 = [h0 (1-%2) -] 5.0
©

Denote by E* = (S;,, I, ], Rh» Sy, I;) the steady state of our
model. It is clear from the above equations that the trivial point
E° =(0,0,0,0,0,0) and E' = (K, (1 — u/by),0,0,0,0,0) are
equilibrium points of (1). System (1) also has a periodic steady-
state
Ez(t) = (Kh(l - :uh/bh)r 0,0,0, SVO(t)' O) ( )
7

where S, (t) = K, (1 - ’;:((3) Note that E?(t) becomes an
The

equilibrium point only when b,s = p,,s and by, = pyp, .
state (0,0,0,0, S,,0(t), 0), though technically also a disease-free
steady state, is not considered since we are interested in the
epidemiological effect of dengue disease on human populations.

Reproduction Number

The basic reproduction number Ry describes the number of new
infections caused by an infected individual in a disease-free
susceptible population (Heesterbeek 2002). We consider using a
time-averaged approach to calculate the basic reproduction
number (Ma and Ma 2006; Wesley and Allen 2009). In this
method, we replace any time-varying parameter with their
longtime averages, reducing the system into an autonomous
system. Note that we have two timedependent parameters,
namely, b, (t) and p,,(t). Since these parameters are periodic
functions, the long time averages can be computed as

(b,) = wilfo“’l b, (t) dt and (u,) = ifowz 1y (8) dt

where w; and w, are the periods of b,(t) and w,(t) ,
respectively. It is clear from (2) and (3) that the period is w; =
®, = 52 and that

<bv) = by, and <:uv) = Kvm-
(3)

Using such values instead of the time-dependent parameters is
equivalent to finding the value of R, when the periodic disease-
free steady-state E2(t) of (1) is an equilibrium point.

To compute for the reproduction number, we proceed by using
the method of the next generation matrix. Let x =
(x4, %2, x3) T = (Iy, Jn, I,) T, where I, J,, and I, are the infected
states of the system. In order to compute for the value of R, it
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is important to distinguish new infections from all other changes
in the population. For i = 1,2,3, let F;(x) be the input rate of
new infections from x;, V;* (x) be the rate of transfer into x; by
all other means, and V;~ be the rate of transfer out of x;. Set

T
T(x) = (Tl(x),Tz(x),T3(x)) s
T
V) = (W), v (0,5 ()
_ _ _ _ T
1% (x) = (vl (x)rvz (x)rv3 (x)) E]
V(x) =V (x) - V).
Recall that the infected compartments have the following
dynamics:
d v
U8 = (1= @)BCy OO — 1, () — I (0),

RN
D = aBCy, 2D — 0] (6) = uaa (D).
aL,®) Sy(©)IR(E)
= BChy T(};) — un (L, ().

It follows that

_ Sn(t)x3
(1 a)BC,,h N(®)

SO (v + ur)xy
F(x)| aBCyp I’\'Ih(t; and V(x) [ (0 + pp)x,
Sy(H)x1 un()x3
h N
Define F and V as

F = [g—: (E*)] andV = [Z—;(E*)]a

where E*is some some equilibrium point. We now replace the
periodic parameters by (8). Evaluating the matrices at the
disease-free equilibrium (7) yields

0 0 (1—a)BCy,,
0 0 aBC
F EZ — vh
( ) Kvbh(bvm - :uvm) 0 0
" Knbym (b — )
and
Y+ ln 0 0
0 0 tm

The basic reproduction number is the spectral radius of
F(E?)V™1(E?), that is, the largest eigenvalue of the obtained
next generation matrix. This gives

u
K, (1 - W") BCp, (1—a)BC,,

bvm

Ry = : :
Kh( _g_:) Y+ Hn Hom

&)

Let us look at the components of Ry. We see that the first
multiplicand under square root, i.e., K, (1 -£ ’””) /Kn (1 - %),
h

bvm
is in fact composed of the steady states of the disease-free
dynamics (5)-(6), hence this represents the vector to host ratio.

The number of vector infections caused by an infected host is
BChy

Y+in
. . 1-a)BC. .
by one infected vector is represented by (ZM Taking the
vm

represented by while the number of host infections caused

geometric mean of the average secondary infections caused by a
single host or vector gives the value of R,.

With the use of time-averaged approach, the basic reproduction
number R only captures the onset of the spread of disease in the
population. It fails to incorporate the introduced seasonality of
vector populations. Thus, we also consider the effective
reproduction number R, (t), which quantifies the progression of
the spread of the disease. The effective reproduction number can
be computed by following the next generation matrix method
without substituting the disease-free equilibrium (Fauzi et al.
2022; S. Zhao et al. 2020). Thus,

R (t)_ Nv(t) Sh(t) Sv(t) BChV (l_a)BCVh
T N N N,y T w(8)
(10)

Sensitivity Analysis

The dynamics of deterministic models are governed by the input
parameters which may exhibit uncertainties. Thus, global
sensitivity analysis is needed to determine which parameters
largely affect the dynamics of the model given perturbations on
the parameters (Agusto and Khan 2018; Marino et al. 2008; Wu
et al. 2013). The partial rank correlation coefficient (PRCC)
measures the sensitivity of an output state variable to parameter
values as a linear correlation between the residuals. The PRCC
values range between -1 and 1 and positive (negative) values
indicate positive (negative) correlation of the model parameters
and the state variable. The larger the absolute value of the PRCC,
the greater the correlation of the parameter with the output.
PRCC is often combined with latin hypercube sampling (LHS)
to allow analysis of parameter variations across each uncertainty
range (Wu et al. 2013; Agusto and Khan 2018).

The LHS matrices are obtained by assuming that all the model
parameters are uniformly distributed and that each parameter is
sampled independently. A total of 1000 model simulations are
done for each LHS using £90% of the nominal values in Table
2. A dummy variable is included to show that the sampling
method is consistent and robust. The time points used are
morbidity weeks 1 to 152. Figure 2 gives the PRCC values of
the parameters with respect to the cumulative values of Jj, .
According to Marino (2008), the PRCC sensitivity analysis
method works well for non-linear monotonic relationships.

1r

057

1 ‘ L
Q\@Qﬁ.&o S0 90 Vs Wysyeps @ AR RN

S
Figure 2: PRCC values of model parameters in reference to
healthcare-seeking class at morbidity weeks 1-152. The red region for
each parameter represents the PRCC values at earlier weeks (1-76)
and the blue region gives PRCC values for weeks (77-152).

We see from Figure 2 that the parameters B, C,,, and p,g
influence cumulative Jj, positively while parameters p,,,,,, @, and
y influence cumulative J, negatively. It should be noted that the
sensitivity of the parameters is different for each morbidity
week. There is a high correlation of the said parameters with the
cumulative Jj, in the first few weeks of morbidity (25-30), then
this gradually decreases for the next set of morbidity weeks. But
the correlation of parameters p,, and y remains high
throughout the given morbidity weeks. Control strategies that
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reduce the value of parameters that positively influence the
cumulative J, or increase the value of the parameters that
negatively influence the infected compartments should
adequately reduce the spread of dengue infections in the city.

SIMULATIONS, PARAMETER ESTIMATION, AND
BOOTSTRAPPING

Epidemiological Data

The daily dengue incidence data from January 2011 to
December 2022 acquired from Baguio City Health Service
Office is used in this study. These were grouped by morbidity
week over three-year periods shown in Figure 3. The graph
shows the oscillating behavior in reported dengue cases over
each three-year period. There are increasing peaks of dengue
cases in morbidity weeks 25-35, 75-95, and 125-145.

3 250

2 +—2011-2013 data

O 200 2014-2016 data

Q —+—2017-2019 data

D 150 {|+2020-2022 data L \

[}

2 100

°

2

5 50

Q ;

& 0 BNV T 1
0 20 40 60 80 100 120 140 160

Morbidity Week (t)
Figure 3: Reported dengue cases in Baguio City by morbidity week
over three-year period from 2011-2022.

Parameter Values and initial conditions

The Philippines Statistics Authority (PSA) conducts a
population census every 5 years. From their report in 2022
(Philippine Statistics Authority 2022), the total Baguio
population for years 2010, 2015 and 2020 are 318676, 345366,
and 366358, respectively. The dynamics of the total population
Ny, are then fitted based on these data to estimate the human birth
rate by, and the mortality rate pp, listed in Table 2. The best fit

model is used to determine the Baguio population at the onset of
each three-year cycle, see Table 3.

Since there is no available data for the vector population,
conservative estimates are used. Because of intervention
measures like destroying mosquito breeding sites in Baguio
City, we expect changes in the vector carrying capacity each
year, but we set a maximum carrying capacity of the vector
population to be 107. It is assumed that there are 2000
susceptible vector and 40 infected vector at the start of each
three-year cycle. The initial conditions of the other
compartments in (1) are listed in Table 4. Here, we assume at
the start of each three-year cycle that the number of recovered is
half of the human population since we only assume a single
strain of dengue virus.

Table 3: Baguio population based on the best fit population model N},
at the onset of each 3-year cycle from 2011 — 2022.

Year N, (0)
2011-2013 318676
2014-2016 335460
2017-2019 335460
2020-2022 362674
Table 4: Initial conditions of each compartment used in (1).
Parameter Values

J»(0) Data from morbidity week 1

1,(0) [0.5.],(0)]

Ry (0) [0.5.N,(0)]

Jn(0) Np(0) — 1,(0) — Jo(0) — R, (0)

S,(0) 2000

I,(0) 40

A summary of the parameter values used in the model
identification are shown in Table 5. Conservative estimates were
utilized for parameters with no known values and were subject
for further parameter estimation based on data.

Table 5: Parameter values used in the dengue transmission model.

Parameter Value References
by, 0.0078 Data-fitted
Un 0.0063 Data-fitted
B 1 (Lizarralde-Bejarano et al. 2017; Twizell et al. 2003)
Chy 0.75 (Lizarralde-Bejarano et al. 2017; Twizell et al. 2003)
Con 0.375 (Lizarralde-Bejarano et al. 2017; Twizell et al. 2003)
y 0.5 (Lizarralde-Bejarano et al. 2017)
0 1 (Lizarralde-Bejarano et al. 2017)
bym 0.4 Estimated
Uom 0.8 Estimated
by 0.2 Estimated
Ups 0.2 Estimated
byyp 1 Estimated
Hop 3 Estimated
Ky 2,215,141 (Baguio City Public Information Office 2022)
K, 10° Estimated
a 0.2 Estimated

Model Identification

We now estimate the parameters in order to fit our model to the
reported data. To capture the observed seasonality, the model is
fitted for the morbidity weeks over each three-year period. The
parameters «, B, Cy,p,, Cp,, Which control the transition of the
susceptible human to healthcare-seeking infected compartments
as well as by, by, byp, tym, typ and K, which describe the
vector population are considered. The model output considered
is the healthcare-seeking infected human J, which is the

available epidemiological data. Parameter estimation is
employed for each of the parameters by minimizing the sum of
least square errors between the model output and reported data
for each morbidity week in each three-year period. This is
carried out using the 1sqcurvefit function in MATLAB.
The values of the parameter estimates are found in Table 6. The
parameter estimates are then used to solve (1) using ode45 in
MATLAB and the resulting dynamics of J,is compared to the
available data, as seen in Figure 4. The evolution of the
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susceptible and infectious vector population based on the
estimated parameters are shown in Figure 5.

It can be deduced from Table 6 that it was during the period of
2014-2016 that the transition rate from susceptible to the
infected class seeking healthcare a had the lowest estimated
value. In contrast, the value of a is seen to increase in the
succeeding years. The vector biting rate B had the largest
estimated values while the carrying capacity K, had the least
estimated values for the years 2017-2019. The value of the
computed basic reproduction number R|, is larger on years 2014
— 2016 and 2020 — 2022 as compared to the other years. The
effective reproduction number R,(t) shown in Figure 4,
captures the onset of the surge of reported cases in each year.
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Figure 4: Plot of data (red circles) VS model values (black curve) and
the effective reproduction number R.(t) (blue curve in logarithmic
scale) of best fit model.
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Bootstrapping

We employ parametric bootstrapping in order to quantify
parameter uncertainty and construct confidence intervals. This
method involves repeatedly sampling multiple observations
from the best fit model in order to quantify parameter
uncertainty using Poisson distribution, centered on the mean at
the time points t (Chowell 2017). As mentioned, we re-estimated
parameters for each of the 1,000 simulated synthetic datasets (as
shown in Figures 8 and 9 in the appendix). The mean and
standard deviation of the datasets are also shown in the
appendix. The confidence interval of the re-estimated
parameters are shown in Table 7. This shows that the best fit
model parameter values (see Table 6) are within + standard
deviations of the mean values of the re-estimated parameters.

The shaded region (in cyan) in the plot for each of the 3-year
periods, as seen in Figure 6, indicates the 95% confidence
interval. The results provide a good confidence level for the
parameter estimates, which implies that the values of the
parameters estimated for each 3-year period are reliable.

Table 6: Estimated parameters from data through different time periods.

Year a Con Cp, K,/107
2011-2013  0.0523 3.2554 0.9052 0.8686  0.0035
2014-2016  0.0198 1.9606 0.9389 0.3472  0.0149
2017-2019  0.0339 1 1 0.0036
2020-2022  0.0471 2.6131 0.7657 0.8459  0.0090
Year bvm Hym bvs Hys bvp Hyp RO
2011-2013 0.7564 0.3558 1.0000 1.0000 4.2367 10.9739 1.3908
2014-2016 0.5498 0.1968 1.0000 0.9757 5.1804 13.6949 1.6747
2017-2019 0.6265 0.4105 1.0000 0.7766 1.0485¢-12 49139 1.4867
2020-2022 0.4090 0.2559 0.9694 1 1.5585e-05 7.2035 1.6125
Table 7: 95% confidence intervals of parameters from bootstrapping through different time periods.
Parameters 2011-2013 2014-2016 2017-2019 2020-2022
a [0.0456, 0.0610] [0.0188, 0.0211] [0.0305, 0.0427] [0.0447, 0.0497]
B [3.0609, 3.6553] [1.7482, 2.6042] [3.9167, 4.0501] [2.4629, 3.2329]
Con [0.8652, 0.9635] [0.8030, 1] [0.9615, 1] [0.6992, 0.8723]
Chy [0.8173, 0.9494] [0.1877, 0.5665] [0.9726, 1] [0.7287, 0.9665]
K,,/lO7 [0.0022, 0.0052] [0.0082, 0.0233] [0.0030, 0.0043] [0.0060, 0.0098]
bym [0.6658, 0.8413] [0.4639, 0.7329] [0.5732, 0.6585] [0.3578, 0.4970]
HUom [0.3100, 0.4249] [0.1739, 0.2467] [0.3664, 0.4357] [0.2216, 0.3109]
by [0.8858, 1] [0.8907, 1] [0.9475, 1] [0.7880, 1]
Wys [0.8911, 1] [0.8711, 1] [0.7363, 0.8063] [0.9152, 1]
b,,p [2.5883, 5.6094] [3.7188, 7.3488] [0, 0.6543] [0, 2.2258]
Hop [9.0476, 12.5342] [11.7970, 15.9821] [4.2584, 6.3356] [6.5500, 9.1745]
Ry [1.3282, 1.4278] [1.5919, 1.6988] [1.4526, 1.4993] [1.5188, 1.6300]

Vol. 18 (Supplement) | 2025

SciEnggJ

433



200
100 - A
[ -
g€ 5 N ) / *,{ Z 100
0 50 100 150 0 50 100 150
Morbidity Week (t) Morbidity Week (t)
(a) Years 2011 — 2013 (b) Years 2014 — 2016
(a) Years 2011 - 2013 (b) Years 2014 - 2016

200

Jn

100

50 100 150
Morbidity Week (t)

SDMorbidity WeeLJ ?«L))
(c) Years 2017 — 2019 (d) Years 2020 — 2022
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synthetic models (cyan curve) after parameter estimation.

DISCUSSION

Current knowledge on dengue transmission in Baguio City
is obtained from statistical and mathematical modeling
studies (Marigmen and Addawe 2022a, 2022b; Marigmen
2024; Libatique et al. 2017). From these studies, seasonal
patterns have been observed, and the highest incidence of
dengue cases occurs between June and July of each year
(Marigmen 2024). In the Philippines, epidemiologically
important parameter values related to dengue transmission,
like the mosquito biting rate B and transition rate from
susceptible to healthcare-seeking infected humans, have
also been identified using compartmental models (de los
Reyes and Escaner IV 2018). However, specific values for
Baguio City have not been identified.

In this study, we consider a well-posed mathematical model
that incorporates the dynamics of the mosquito population
over a 3-year span. The model parameters are calibrated to
dengue incidence data in Baguio City from 2011 to 2022.
This modification of earlier models and its fitting to the
Baguio dengue incidence data is a significant contribution
in the study of dengue transmission in Baguio City. To the
best of our knowledge, there are no available studies on
mosquito dynamics as this affects dengue transmission in
Baguio.

We further incorporate a carrying capacity for the human
population and periodic growth of the vector, as a
refinement to the model of de los Reyes and Escaner IV
(2018). Incorporating human carrying capacity into the
model provides realistic dynamics of human population
growth in an environment with limited resources. This gives
logistic growth rather than exponential growth. Moreover,
introducing periodic vector population growth into the
model captures seasonal fluctuations in mosquito population
due to climatic and environmental factors.

Baguio City has a wet season from May to October and a
dry season from November to April. The city is in the
highlands and sits on a typhoon belt, hence the unpredictable
weather experienced. (Chepenlianskaia and Khan 2023).
Taking this into account and the fact that the life cycle of a
mosquito is dependent on climate, the model incorporates a
time-varying vector population growth rate derived from the
study of Mancuso et al. (Chandra and Mukherjee 2022;
Mancuso et al. 2023). The time-varying vector population
of Mancuso et al. has been used in epidemiological studies
such as in studies on the West Nile virus transmission,
however, integration of this into dengue transmission has
not yet been done. (Mancuso 2023). To our knowledge,
there have not been studies in the Philippines that include
time-varying vector population growth in the transmission
of dengue or any vector-borne disease.

The intent of this enhancement on previous models is to
better capture and visualize the dynamics of dengue-infected
mosquitoes in the city. The inclusion of a time-varying
vector population in the model adds insight into the
observed pattern (from Baguio data for years 2011 to 2022)
of disease progression over three-year periods. Study results
can be referred to in assessing whether vector management
initiatives implemented by the Baguio City Local
Government Unit are effective in the prevention of dengue
outbreaks. Simulations using the model with parameter
values derived from data should be helpful in formulating
policy on the management of vector populations.

Figure 3 shows a surge in dengue cases during the period
2014 — 2016. This may be due in part to the low value of «,
i.e. a large proportion of dengue-infected individuals did not
seek hospitalization. This estimated value for a in
2014-2016 is comparable to the estimates of de los Reyes
and Escaner (2018) for the years 2014 and 2015, which are
low values as well.

Notably, it was in 2016 when City Ordinance No. 66 series
of 2016 (called the ”Anti-Dengue Ordinance of the City of
Baguio”) was first implemented (Refuerzo 2024a). This
measure may have increased dengue awareness in the
community and as a result, substantially increased the
proportion of infected individuals seeking healthcare in the
succeeding years. Figure 3 shows a significant decrease in
dengue infections in the years 2017 —2019.

The reduction in mosquito carrying capacity is notable in
2017 — 2019 and is likely attributable to LGU efforts in
vector population control. The sustained effort of the city to
destroy mosquito breeding sites is apparent in the decrease
of K,, from the years 2014 — 2016 and 2017 — 2019.

The estimated biting rate for all periods is well within the
epidemiologically accepted ranges (Lizarralde-Bejarano et
al. 2017; Zahid et al. 2023). The changes in the parameter
values will have to be further investigated as this may be
affected by climatic factors.

The R, values 1.67 and 1.61 in the years 2014 — 2016 and
2020 — 2022, respectively, are larger, compared to that in
other years since there is a surge in the number of reported
dengue cases during these years. In fact, R, =~ 1.67 in the
years 2014 — 2016 is close to the measured R, =~ 1.62 in
2014 by de los Reyes and Escaner I'V (2018).

The estimated seasonal parameter values suggest that there
is a year-round abundance of mosquitoes, with strong surges
during the rainy season (see Figure 5). This observation is
consistent with the findings in (Marigmen and Addawe
2022a), indicating that climatic factors such as increased
precipitation led to more favorable breeding sites,
consequently raising dengue incidence in the city. Hence,
sustained efforts to control and eradicate mosquito breeding
grounds should be maintained throughout the year. This
suggests that vector-control interventions such as fogging
and community-based cleaning efforts are indeed effective
measures in mitigating the risk of dengue outbreaks. Further,
observations regarding seasonal fluctuations in vector
population as well as multi-year cycles of disease incidence
would be crucial in formulating strategies for disease control,
including the matter of lead times for implementation of
mitigation measures. Progression of the (time-dependent)
effective reproduction number, see for instance Figure 5,
can provide guidance as to timing and intensity of
application of mitigation measures. In the future, more
advanced interventions, such as the use of Wolbachia-
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infected mosquitoes (Dorigatti et al. 2018), can also be
considered.

The study has had the benefit of access to dengue incidence
data covering over 10 years (2011 - 2022). This is significant
as study results can then be utilized by local government to
make prospective forecasts of disease incidence. The model
also allows us to estimate the number of dengue infected
individuals who did not seek healthcare, which is not
accounted for in the data. Parameter estimates and
observations on vector dynamics can be referred to in
determining optimal timing, intensity and duration of
application of control and mitigation measures, to ensure
good outcomes. This can be simulated through our model by
adding, for instance, a “harvesting” term in the susceptible
vector compartment i.e.,

ds, 3
0O b omo (1 - NK—“)) - <BC;W e+ uv(t)) 5,() — NH,
(11

where

{c ift<t<t+dH=

H= .

0 otherwise,

annually for three years. Here, T denotes the week when we
start reducing vector population, d for the duration in weeks
of the process per year, and ¢ for the percentage of removed

Morbidity Week 0

100

50

vector population. In the simulation shown in Figure 7 for
the years 2011-2013 where parameters of the best fit model
were used, we see the effect of reducing by 0.1 the vector
population for a duration of 5 weeks at different starting
points. In this scenario, it is best to start reducing the vector
population on morbidity week 45 of each year to reduce the
number of dengue patients (black line vs red dashed line).
We intend to explore optimal cycle and duration in the
succeeding studies.

The inclusion of sinusoidal vector birth and death rates in
model (1) makes it highly nonlinear. This means that the
model is sensitive to initial conditions. Parameter estimates
can be made closer to real life scenario by using real data
instead of conservative assumptions, e.g. on initial number
of susceptible and infected vectors. The sinusoidal vector
birth and death rates in the model do not explicitly account
for factors affecting these. These rates simply describe the
observed seasonality of mosquito population levels.
Incorporating factors like environmental conditions,
population density, and human mobility, which impact such
seasonality could lead to better understanding of the effect
of these factors on the spread of dengue disease. One could
also modify the model to include multiple strains of dengue.
In fact, there are host-host and host-vector multi-strain
dengue models in literature that also observed seasonal
dengue epidemics (see Aguiar et al. 2011; Lourengo and
Recker 2013; Rashkov and Kooi 2021).
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Finally, optimal model parameter values were obtained using
numerical methods. Specifically, these values represent local
solutions to a given minimization problem and may not
necessarily fall within epidemiologically accepted ranges.
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Figure 7: Plot of 2011-2013 best fit model (black line) vs new estimates (red dashed-line) after vector reduction. Yellow bars indicate the duration (5
weeks) of vector reduction (0.1) starting at the given morbidity weeks for each year.

Baguio City and the Philippines. This approach helped ensure
that our local solution is reasonably close to the true solution.
Additionally, the model was successfully calibrated to dengue
incidence data in Baguio City from 2011 to 2022.

Moreover, multiple sets of parameter values can produce similar

model outputs (Pope et al. 2009). To address this, we used initial

Here are the histograms of the parameters from bootstrapping.

parameter values informed by related studies and data from
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Figure 9: Histogram of estimated parameters obtained from bootstrapping. The green line indicates the mean value of the estimated parameters
obtained from bootstrapping, and the blue line indicates the estimated parameters obtained from actual data, and the red line represents the lower and

upper bounds of the 95% confidence interval.
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CONCLUSION

The dengue disecase model presented by de los Reyes and
Escaner (2018) was modified to analyze dengue incidence in
Baguio City from 2011 to 2022, stratified into three-year cycles.
The model incorporates periodic growth rates for vectors and
carrying capacities for both host and vector populations. The
model was proven to be well-posed, and the averaged and
effective reproduction numbers were computed. Sensitivity
analysis revealed that epidemiologically important parameters
such as the transition rate from infected to hospitalized humans,
vector biting rate, and bidirectional transmission probabilities,
are highly sensitive. Parameter values were determined using a
constrained-ODE  optimization routine, with confidence
intervals obtained via bootstrapping. The estimated parameters
accurately capture strong surges in the mosquito population
during rainy seasons. Notably, a reduction in mosquito carrying
capacity observed from 2017 to 2019 is likely attributable to
Local Government Unit (LGU) vector control efforts. These
parameter estimates and insights into vector dynamics can serve
as a reference for determining the optimal application of control
and mitigation measures.
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